数 学(その1)

問題 1

次の問いに答えよ。

- (1) データ 63, 69, 71, 77, 81, 83 の平均値は アイ, 標準偏差は ウ である。
- (3) xy 平面上のグラフ $y = x^4 + 8x^3 + ax^2 20x$ が x = b に対して線対称であるとき, $a = \boxed{$ カキ $b = \boxed{ 2 \text{ } }$ か である。ただし a,b は実数とする。
- (4) x, y を正の整数とし、x > y とする。 $\frac{1}{x} + \frac{1}{y} = \frac{1}{12}$ を満たす (x, y) の組は コ 組あり、この うち x y を最小にする組は (x, y) = (サシ) 、 (スセ) である。
- (5) 4個のさいころを同時に投げるとき、うち3個の出た目が同じで、他の1個の出た目がこれと異なる確率はy である。
- (6) 三角形 OAB の辺 OA を 2:1 に 内分する点を D,辺 AB を 3:4 に内分する点を E,線分 BD と線分 OE の交点を F とするとき, $\overrightarrow{OF} = \frac{\boxed{y}}{\boxed{r}}\overrightarrow{OA} + \frac{\boxed{h}}{\boxed{r}}\overrightarrow{OB}$ である。
- (7) a, x を実数とする。関数 $f(a) = \int_a^{a+1} |x^2 x| dx$ について f(a) の最小値は $\frac{\square}{|\mathcal{I}|}$ である。
- (8) 公差が0でない整数である等差数列について、初項から第n項までの和を $S_n (n=1,2,3 \cdots)$ とする。 S_n がn=7で最大値 119 をとるとき、初項は $\boxed{$ ネノ $}$ 、公差は $\boxed{$ ハヒ $}$ である。
- (9) 関数 $f(x) = \frac{\sqrt{4+9x}-2}{x}$ に対し、 $\lim_{x\to 0} f(x) = \frac{\boxed{7}}{\boxed{\land}}$ である。
- (10) 関数 $f(x) = \frac{6\sin x 6\cos x}{\sin x + \cos x}$ のとき $f'\left(\frac{\pi}{12}\right) = \boxed{$ ホ , $\int_0^{\frac{\pi}{4}} f(x) dx = \log \frac{1}{\boxed{\begin{subarray}{c} \hline \end{subarray}}}$ である。

数 学 (その2)

問題 2

xy 平面上に曲線 $C: y = f(x) = x^2 + p$ と直線 $\ell: y = qx$ がある。曲線 C と直線 ℓ が異なる 2 点 $A(\alpha, f(\alpha))$, $B(\beta, f(\beta))$ で交わるとき,次の問いに答えよ。ただし p > 0,q > 0, $\alpha < \beta$ とする。

- **(1)** *p*, *q* が満たすべき条件を求めよ。
- (2) p, q をそれぞれ α , β で表せ。
- (3) 曲線 C と直線 ℓ で囲まれる部分の面積を S_1 ,曲線 C と直線 ℓ と g 軸で囲まれる部分の面積を S_2 とする。 $S_1=S_2$ のとき g を g で表せ。
- (4) (3) のとき, p, q がともに正の整数であれば α , β はいずれも正の整数となることを示せ。

数 学 (その3)

問題3

複素数zの絶対値を|z|と表す。次の問いに答えよ。

- (1) 任意の複素数 z_1 , z_2 に対して, $|z_1z_2| = |z_1||z_2|$ が成り立つことを証明せよ。
- (2) 任意の複素数 z_1 と 0 でない複素数 z_2 に対して, $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ が成り立つことを証明せよ。
- (3) 任意の複素数 z_1 , z_2 に対して, $|z_1+z_2| \leq |z_1|+|z_2|$ が成り立つことを証明せよ。
- (4) 任意の複素数 z_1 , z_2 , …, z_n に対して,

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$

が成り立つことを証明せよ。