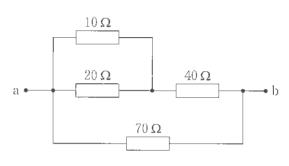
入 学 試 験 問 題 (1次)

理 科

令和 3 年 1 月 25 日 10 時 50 分—12 時 10 分

注 意 事 項

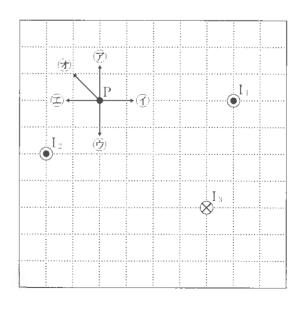
- 1 試験開始の合図があるまで、この問題冊子を開かないこと。
- 2 この問題冊子は表紙・白紙を除き 37 ページ(物理 1 ~ 10 ページ, 化学 11~22 ページ, 生物 23~ 37 ページ) である。 落丁、乱丁、印刷不鮮明の簡所等があった 場合は申し出ること。
- 3 物理, 化学, 生物のうちからあらかじめ入学志願票に記入した2科目を解答する こと。
- 4 解答には必ず黒鉛筆(またはシャープペンシル)を使用すること。
- 5 解答は、各設問ごとに一つだけ選び、解答用紙の所定の解答欄の該当する記号を 塗りつぶすこと。
- 6 解答を訂正する場合は、消しゴムできれいに消すこと。
- 7 解答用紙の解答欄は、左から物理、化学、生物の順番になっているので、マーク する科目の解答欄を間違えないように注意すること。
- 8 監督員の指示に従って、問題冊子の表紙の指定欄に受験番号を記入し、解答用紙 の指定欄に受験番号、受験番号のマーク、氏名を記入すること。 「志願票に記入し た科目を2つマークしなさい」の欄には、入学志願票と同じ科目にマークすること。
- 9 この問題冊子の余白は、草稿用に使用してよい。ただし、切り離してはならない。
- 10 解答用紙およびこの問題冊子は、持ち帰ってはならない。

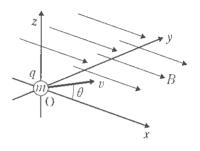


上の枠内に受験番号を記入しなさい。

物 理

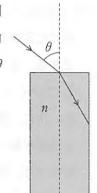
設問ごとに、与えられた選択肢の中から最も適当なものを一つ選べ。


1 図のように、4個の抵抗を接続 し、ab 間に電圧を加えた。10 Ωの 抵抗を流れる電流の大きさが 0.10 Aのとき、70Ωの抵抗を流れる電 流の大きさは何Aか。


- (c) 0.10 (d) 0.20 (d) 0.30 (e) 0.40 (d) 0.50

2 図のように、紙面に対して垂直に 3 本の直線電流 L₁, L₂, L₃ が流れている。各直 線電流は十分に長く、向きと大きさは下表の通りである。点Pでの磁場の向き は、図のどの矢印の向きか。

電流	问き	人きさ
I	紙面の裏から表	4.0 A
I 2	紙面の裏から表	1.0 A
I_3	紙面の表から裏	2.0 A

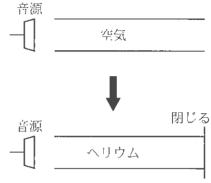

- 3 電池の両極間に10Ωの抵抗と電圧計を並列に接続したところ、電圧計は6.0V を示した。抵抗を 5.0Ω のものに交換すると、電圧計は5.5Vを示した。この電 池の起電力は何 V か。ただし、電圧計の内部抵抗は十分に大きいとする。
- $(\widehat{\mathcal{P}}) = 6.2$
- (7) 6.4
- (b) 6.6
- (Î) 6.8
- **7.0**
- 4 図のように、x軸の正の向きに磁束密度Bの-様な磁場がかかっている。原点 () から、質量 m. 電気量a(>0)の粒子を、x軸とのなす角度が θ $(0 < \theta < 90^{\circ})$ となるようにxy 平而内に凍さy で 発射する。原点を離れた粒子が再びx軸を通過す るまでに、x 軸方向に進む距離はいくらか。重力 の影響は無視できるものとする。

- $\frac{2\pi mv}{qB\tan\theta}$
- **5** 容量が可変のコンデンサー,抵抗値 10 Ω の抵抗。自己インダクタンス 1.0 mH のコイルを直列につなぎ、電圧の実効値が一定で角周波数 1.0×10^{-1} rad/s (周波数 1.6×10^{11} Hz)の交流電源に接続した。この回路に流れる電流が最大となるための コンデンサーの容量は何 µF か。
- ② 0.10 ③ 0.31 ② 0.62 ④ 3.1
- (矛) 3.9

- **6** $^{\frac{222}{86}}$ Rn の原子核は α 崩壊を起こして $^{\frac{218}{81}}$ Po の原子核になる。このとき、放出される α 粒子の運動エネルギーは、反動で動く $^{\frac{218}{81}}$ Po の運動エネルギーの何倍か。 $^{\frac{222}{86}}$ Rn の原子核は最初静止していたとする。
- **7** ヨウ素 131 (¹³/₃₈I) の半減期は 8.0 日である。 2.0 g のヨウ素 131 は 4.0 日後に何 g になるか。
 - ? 0.50 ? $\frac{\sqrt{2}}{2}$? 1.0 x $\sqrt{2}$? $\sqrt{3}$
- **8** 電子線に関する記述として正しいものを全て選び、それらの先頭に付してある数 $(1, 2, 4, \pm 6)$ の和を求めよ。
 - 1) 進行方向に垂直な電場があると、軌道が曲げられる。
 - 2) 進行方向に垂直な磁場があると、軌道が曲げられる。
 - 4) 速さが速いほど、物質波(電子波)の波長は短くなる。
 - 8) 電磁波の一種である。
 - ⑦ 3
 ⑦ 5
 ⑦ 6
 ⑤ 7
 ② 15

9 図のように、絶対屈折率nの透明な物質で作られた十分に長い円柱が真空中に置かれている。円柱の上面から、中心軸と θ をなす角度で単色光を入射した。光が円柱の側面から出ないような入射角 θ の最大値を θ_{\max} とする。 $\sin\theta_{\max}$ はいくらか。ただし、 $1 < n < \sqrt{2}$ とする。

 $\mathfrak{D} = \frac{1}{n^2}$

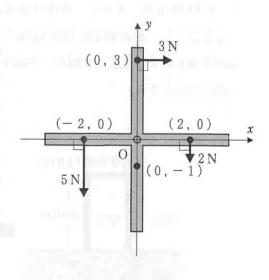

 $\Im \frac{1}{n}$

 \oplus $\frac{1}{\sqrt{n}}$

- 10 真空中に置かれた絶対屈折率 1.6 のガラス板の表面を、絶対屈折率 1.4 の透明な薄膜で一様におおい、この面に垂直に入射する波長 5.6 × 10⁻⁷ m (真空中の波長) の光の反射光 (薄膜表面の反射光とガラス板表面の反射光) が弱めあうようにしたい。最小の薄膜の厚さは何 m か。
 - \bigcirc 1.0 × 10⁻⁷
- ① 2.0×10^{-7}
- 5 4.0 × 10⁻⁷

- 31.6×10^{-6}
- 11 振動数がそれぞれ f_A と f_B (> f_A)のおんさ A と B があり,同時に鳴らすと毎秒 4 回のうなりが観測された。次に,観測者が A と B を結ぶ線分上を音速の 1000 分の1 の速さで動くと,うなりは消えた。音速は 340 m/s である。 f_A と f_B の平均値は何 Hz か。
 - **7** 500
- **1000**
- ① 1500
- 2000
- **3** 2500

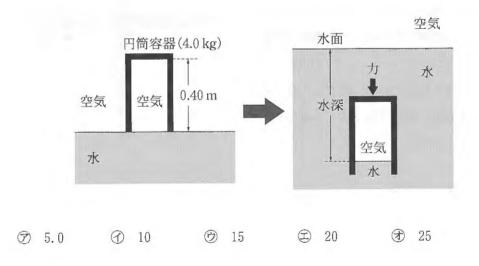
12 図のように、両端の開いた細長い管の一端の 近くに音源を置いて音を出す。音の媒質は空気 である。音の振動数を 0 Hz から徐々に大きく していくと、440 Hz のときに初めて共鳴し た。次に、媒質をヘリウムガスに置換し、音源 とは反対側の管の端を閉じた状態で同様の実験 を行った。初めて共鳴する振動数は何 Hz か。 ヘリウムガス中の音速は空気中の3.0倍とし、 開口端補正は無視できるものとする。


- $(\bar{P}) = 220$
- (?) 330
- ② 660 (主) 880
- (A) 990
- 13 10.0℃, 100gの氷に、常圧下で3.93×10 Jの熱量を与えると、溶けて 10.0 ℃ の水になった。水の比熱を 2.10 J/(g·K), 水の比熱を 4.20 J/(g·K)とす ると、氷の融解熱は何 I/g か。比熱の温度依存性は無視できるものとする。
 - ⑦ 110 (f) 220
- () 330
- **(I)** 440
- **3** 550
- **14** 同じ初期状態の単原子分子理想気体に対して、①定圧変化、②等温変化、また は、③断熱変化による操作をそれぞれ行い、体積を元の2倍にした。①、②、③の 各操作後の気体の絶対温度をそれぞれ T_1, T_2, T_3 とする。正しい大小関係はどれ か。

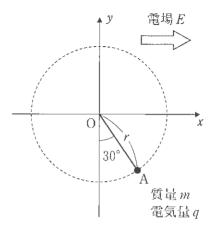
 - (7) $T_1 < T_2 < T_3$ (9) $T_1 < T_3 < T_2$ (9) $T_2 < T_4 < T_3$

- $\textcircled{\textbf{x}}$ $T_3 < T_1 < T_2$ $\textcircled{\textbf{x}}$ $T_3 < T_2 < T_1$

- 15 物質量 $2.0 \, \text{mol} \, \text{の単原子分子理想気体の圧力を一定に保ったまま、温度を } 50 \, \text{K}$ 上昇させた。このとき気体が外部にした仕事は何 J か。気体定数を $8.3 \, \text{J/(mol·K)}$ とする。
 - **7** 50
- 83
- ① 100
- **(1**) 420
- **3** 830
- **16** なめらかな水平面上を速さvで進む質量mの小球Aが、静止している質量M(>m)の小球Bに正面衝突する。AとBの間の反発係数をeとするとき、衝突後にAが逆方向に進むための必要十分条件はどれか。
 - $? e > \frac{m}{M}$
- $\bigcirc e > \frac{m}{m+M}$
- $\bigcirc e = \frac{m+M}{mM}$


- $\textcircled{x} e < \frac{m}{m+M}$
- $\textcircled{3} \quad e < \frac{m}{M}$
- 17 図のように、原点 O で直交するように 2 本の軽い棒を結合し、O を通る軸を中心として xy 平面内でひとつの剛体として回転できるようにする。 x 軸または y 軸に 平行な 2 N、3 N、5 Nの力が図のように棒に加わるとき、剛体が回転しないためには、(0,-1)の点に何 Nの力を加えればよいか。ただし、加える力の方向は x 軸に平行とし、x 軸の正の向きを正とする。

- \bigcirc -3
- ① 0
- **(E)** 1
- **∄** 3


18 周期 T_0 の単振り子がある。もし、「地球の平均密度と半径が共に現在の 2 倍であったとする」ならば、この単振り子の周期は T_0 の何倍になるか。ただし、周期は地表面上で測定し、振れ角の小さい場合を考える。また、地球の自転、扁平率(真球からのずれ)の影響は無視できるものとする。

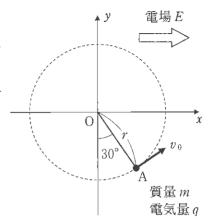
19 図のように、質量 $4.0 \, \mathrm{kg}$ 、高さ $0.40 \, \mathrm{m}$ 、容積 $1.0 \times 10^{-2} \, \mathrm{m}^3 (10 \, \mathrm{J}) \, \mathrm{yr}$ トル)の変形しない円筒形の容器を逆さにし、水面に持ってくる(図左)。容器の中には大気圧 $(1.0 \, \mathrm{気E})$ の空気が入っており、容器中の空気の質量および容器の壁の厚さは無視できるものとする。この容器に鉛直下向きの力を加え、円筒の中心軸を鉛直に保ちながら、中の空気が漏れない状態でゆっくりと水中に沈めていく(図右)。水深が h_0 を超えると、下向きの力を加えなくても容器はそのままさらに深く沈んでいく。 h_0 は何 m か。ただし、水圧は水深が $10 \, \mathrm{m}$ 深くなるごとに $1.0 \, \mathrm{気圧}$ ずつ上昇するものとし、水の密度は $1000 \, \mathrm{kg/m}^3$ とする。また、水深は、水面と容器中の空気の下面との差で定義し(図右)、容器中の空気は温度一定の理想気体として扱うことができるとする。

次の文章を読み、以下の問い(問題 20~22)に答えよ。

図のように、水平軸をx軸、鉛直軸をv軸 (上向きを正)とするxv 平面内での、質量m. 電気量q(>0)の点電荷Aの運動を考える。A は、原点 O を中心にxx 平面内で回転できる長 さァの絶縁体でできた曲がらない細い棒の端に 固定されている。図のように、x軸の正の向き に一様な電場 Eをかけたところ、Aはv軸の 負の部分と棒のなす角度が30°の位置でつり合 い静止した。重力加速度の大きさを g とし、 棒の質量、および、棒と電場の相互作用は無視 できるものとする。

20 E の強さは $\frac{mg}{g}$ の何倍か。

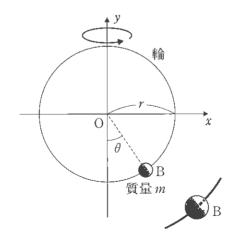
$$\bigcirc$$
 $\frac{\sqrt{3}}{6}$

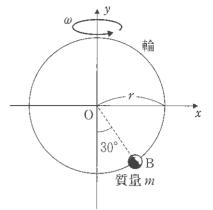

$$\Im \frac{1}{2}$$

$$\bigcirc$$
 $\frac{\sqrt{3}}{2}$

21 A が棒を引っ張る力の大きさは mg の何倍か。

$$\bigcirc \frac{2\sqrt{3}}{3}$$


22 次に、図のように電場Eの中で静止している Aに、円の反時計回り接線方向の初速度を与え る。A が円運動をするためには、初速度の大きさ はある値 v_0 を超える必要がある。 v_0 2はrgの何 倍か。


$$\bigcirc 8\sqrt{3}$$

次の文章を読み、以下の問い(問題23~25)に答えよ。

図のように、水平軸をx軸、鉛直軸をy軸(上向きを正)とするxy 平面に、半径rの輪を固定する。輪の中心は原点 0 に一致させる。さらに、質量 m の穴の開いた 小球Bを輪に通し、輪にそって動けるようにする。輪は、図のようにy軸のまわ りにx軸と一緒に回転できるようになっており、Bの位置は、BとOを結ぶ線分 がy軸の負の部分となす角度 θ で表すことができる。重力加速度の大きさをgとす る。

23 輪と小球Bの間に摩擦がない場合を考え る。図のように、輪が角速度の大きさωで回 転することにより、Bは $\theta = 30^{\circ}$ の位置でつり 合い止まっている。 ω^2 は $\frac{g}{r}$ の何倍か。

$$\mathfrak{P} \frac{\sqrt{3}}{3}$$

$$\bigcirc 2\sqrt{3}$$

$$\bigcirc$$
 $\frac{4\sqrt{3}}{3}$

$$\bigcirc 8\sqrt{3}$$

24 次に、輪と小球Bの間の静止摩擦係数が0.50の場合を考える。輪がある角速度 で回転することにより、Bは $\theta=30^\circ$ の位置でつり合い止まっているとする。この 条件を満たす角速度の大きさには、最大値ωΗと最小値ωLが存在する(角速度の大 きさが $\omega_{\rm H}$ より大きいと θ > 30°、 $\omega_{\rm L}$ より小さいと θ < 30° となる)。 $\omega_{\rm H}{}^2$ は $\frac{g}{r}$ の 何倍か。

$$\bigcirc \frac{15\sqrt{3} + 12}{11}$$

$$\oplus \frac{20\sqrt{3}}{11}$$

$$\bigcirc$$
 $\frac{10\sqrt{3} + 16}{11}$

25 ω_1^2 は $\frac{g}{r}$ の何倍か。

$$\bigcirc \frac{15\sqrt{3}-24}{11}$$
 $\bigcirc \frac{10\sqrt{3}-16}{11}$

$$\bigcirc \frac{10\sqrt{3}-16}{11}$$

$$\oplus \frac{\sqrt{3}}{11}$$

$$3 \frac{15\sqrt{3} - 12}{11}$$